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ABSTRACT

I review why recent simulations of lattice
gauge theories have resulted in substantial
demands from particle theorists for supercomputer
time. These calculations have yielded first
principle results on non-perturbative aspects of
the strong interactions. An algorithm for

simulating dynamical quark fields is discussed.
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In the last few years particle fheorists have become extensive users of
supercomputers. Although theorists have traditionally used computers for
diverse tasks from algebraic manipulation to numerical evaluation of Feynman
integrals, the total amount of computer time involved was usually rather small.
This has changed markedly with the application of Monte Carlo simulation to
lattice gauge theory.

The.most dramatic consequence of Ehese calculations has been rather
convincing numerical evidence that the standard Yang-Mills theory of the strong
interactions can simultaneously display quark confinement and asympfotic
freedom. Calculations are now concenfrating on first principles calculations of
hadronic properties.

These simulations use the lattice formulation of gauge theory as a
nonperturbative cutoff scheme. Unlike most conventional procedures for removing
field theoretical divergences, the lattice prescription is applied at the
outset, and the theory becomes a well defined mathematical system before any
fﬁrther approximations. The lattice is, however, only a mathematical trick, and
an extrapolation to the continuum limit of vanishing latticeASpacing is a
necessary precursor to the extraction of physical results.

Let me begin this talk with a brief review of Wilson's rather elegant
formulation of gauge fields on a latticel. His approach 1s based on the concept
of a gauge theory as a theory of phases. When an electron travels along some
world line in space-time, its interaction with the electromagnetic field can be
described in terms of its wave function acquiring a phase given by the

exponential of the integral of the vector potential along its path C

p + p exp(i e | A dxu) (1)
C



This phase is eaéily understood in the rest frame, where the frequency or energy
of the electron is Increased by the product of the scalar potential and the
electron charge. Equation (1) just generalizes this to an arbitrary Lorentz
frame.

To formulate this idea on a lattice, we replace continuous world lines with
sequences of discrete steps between nearest neighbor sites on a hypercubic
lattice.' The fundamental gauge variables become phase factors associated with
each of the bonds‘connecting nearest neighbor sités. A particularly nice
feature of this formulation 1s the generalization to a non-Abelian theory; the
phases are just replaced with matrices in the appropriate group. Thus, for the
SU(3) theory of the strong interactions the elementary gauge variables are 3 by
3<unitary unimodular matrices Uij: one such associated with each nearest
neighbor bond (ij) on a four dimensional hypercubic lattice,

To formulate a dynamics for these variables we need an actiomn. Motivated
by the definition of field strengths as a generalized curl of the vector
potential, we consider the phase factors associated with the smallest closed
loops on the lattice, i.e. elementary squares or "plaquettes.” A simple form
which in the classical continuum limit is proportiomal, up to an irrelevant
additive constant, to the usual gauge theory action is

$=-7 Re(Tr I Usy) (2)
a 0

where the sum is over all the plaquettes of the lattice and the product is an
ordered group product of the elements surrounding the given square.
To quantize the theory, we use the Feynman path integral approach. Thus we

exponentiate our action and integrate over all fields and consider

z = [ (du) e BS(D)



Here the parameter 8§ is proportional to the inverse of the bare gauge coupling
squared, and the integratiomn over group elements uses the inﬁariant measure.

The use of a space time lattice emphasizes the close comnections between
particle and condensed matter physics. Equation (3) is equivalent to a partition
function. Indeed, the field theory becomes a statistical mechanics problem
where the temperature corresponds directly to the coupling constant. This
enables ghe particle physicist to borrow Monte Carlo simulation methods directly
from the solid state physicist.

A lattice gauge simulation begins with some initial configuration of the
field, stored as an array in a computer memory. The computer then loops through
the lattice, making pseudo-random changes which mimic thermal fluctuations.
After thermal equilibrium is established, Green's functions of the field theory
are extracted as correlation functions of the statistical system.

Such calculations have made some particle theorists avid users of super-
computers. The fastest computing machines available are necessary to overcome
certain inherent problems. In a Monte Carlo calculation fluctuations are always
present and give rise to statistical errors which only decrease with the square
root of the computer time. A one order of magnitude improvement in accuracy
requires a two order of magnitude increase in computation. In addition to high
speed, large computer memories are necessary. As space-time is four
dimensional, the linear sizes of lattices which are practical for simulation on
modern supercomputers are quite limited, with 10 to 20 sites on a side being
typlcal,

Despite these limitations, lattice gauge simulations have produced rather
remarkable quantitative non-perturbative rtesults on the characteristics of the

strong interaction. Before discussing some of these results, let me review the



parameters of the non-Abelian gauge theory of the hadronic forces. First are
the quark masses. These are presumably determined by a higher level unification
of all interactions, and the values are arbitrary in our simulations. One of
the most remarkable features of the continuum gauge theory is that these are the
only parameters. In particular, if we counsider the chiral limit where the quark
masses vanish, then we have a theory with nothing to adjust to fit experiment.
Indéed, ;ny dimensionless quantity, such as the ratio of the rho mass to the
nucleon mass, or the pion nucleon coupling comstant, is in principle uniquely
determined. |

This lack of parameters seems rather peculiar because on the lattice it
looks like we do have further variables. For instance,\wa have the bare
coupling constant and the lattice spacing. It is in taking the continuum limit

"

that these quantities "eat” each other via a mechanism given the marvelous name
"dimensional transmutation” by S. Coleman and E. Weinbergz. I will now describe
this phenomeﬁon in lattice language.

When the lattice cutoff is in place, the lattice spacing a forms a natural
unit in which to measure éimensionful quantities. For example, the mass m of

some physical particle measured in lattice units is an inverse correlation

length

ma=Eg | (4)
Non-particle physicists may wish to put appropriate factors of Planck's constant
and ¢ into this equation. For a continuum limit we wish to take a to zero while
m goes to its physical value. This will give a divergent correlation length and
is the reason for the statement that one must take a statistical system to a

critical point to obtain a continuum field theory.



Now for an asymptotically free gauge theory we know something about how the
bare coupling behaves as we approach the continuum limit., The coupling is an
effective coupling at the scale of the lattice spacing, and therefore it should

-decrease logarithmically with decreasing scale

g0” = 1/ (vo log(a Ay 7) + (11/vo)log(log(a 2o ™7)) + 0(gg™))  (5)
Here vyg and y; are the first two coefficients in the Gell-Mann Low
.
renormalization group function and Ay 1s an integration constant. We now invert
this weil known relation ;o obtain the ;utoff a as a function of the coupling.
Putting this in eq. (4) gives an explicit formula for how the correlation length

diverges as the coupling is taken to zero
_Y1/(27?)

ma= (n/hg)(gs%vo) exp(~1/(2vp82) }(140(gy D)) (6)

Note the essential singularity at vanisﬁing coupling; dimensional transmutation
is inherently non-perturbative.

We can use this equation to determine m., TIf by Monte Carlo simulation or
some other means one can obtain the correlation lengtﬁ as a function of the bare
coupling, it should display the essential singularity of equation (6). The
coefficient of this singularity is the mass in units of Ag. The important point
here is that Ay is independent of the particular mass being measured. By
performing the above procedure for two different masses, one can divide the
results to eliminate Ay and obtain the ratio of the corresponding masses, with
no parameters remaining to adjust.

As a first application, consider the quark-antiquark potential. We first
put external sources with quark quantum numbers inte our lattice and measure the

resultant energy. We then extract the linear part of long range potential



assoclated with confinement. In lattice units, this gives a dimensionless
number azK, where K is éhe coefficient of this linear behavior or the so called
"string tension.” The empirical Regge trajectories give us an experimental
value of about (400 Mev)? for K. Looking for the essential singularity in a’g
as above then gives a relation between K and Ay. A recent calculation for pure

SU(3) fields gave3

»

Ag = 9.6 x 1073 /K (7
Using the perturbative relation® between Ag and a somewhat more conventional
parameter Aponm 8ives the experimentally acceptable result

Aom = 320 MeV. (8)

This calculation is particularly remarkable in that it relates the short
distance behavior of asymptotic freedom to the long distance scale of
confinement,

The next physical number to come from lattice calculations was the
temperature of a real phase transition between a vacuum well described by
thermal excitations of a few hadrons and a high temperature phase best
characterized as a black body gas of quarks and gluons. In the pure glue theory
this transition appears to occur at a temperature of about 200 MeV and to be
first ofder with a rather large latent heat®, Calculations including light
quarks still indicate a rather abrupt change, but there is some controversy
whether the transition remains first order or if a true thermodynamic
singuiarity remains®.

Another observable that has received considerable attention is the glueball
mass. Ignoring Fhe quarks, there should exist particles which are bound states

of gluons alonme. Lattice simulations’ suggest a very rich spectrum below 2 GeV



beginning with a state of J¥C =0 ** and a mass in the range 700-1000 MeV, This
is somewhat awkward experimentally, but the present calculations ignore mixing
with quark states and say nothing about the width of this particle.

Including dynamical effects of quark fields in lattice simulations is an
area of intense ongoing research. Here there is an approximation which has
generated considerable interest. This “"valence” or "quenched" approximation
takes ga&ge field configurations obtained via conventional Monte Carlo
simulations of the gluon part of the action alone, and then the Dirac equation
is solved in these fiélds. Various combinations of quark propagators then
represent propagation of different mesonic states. In terms of Feynman
diagrams, this approximation includes all gluonic exchanges between the valence
quarks, but neglects virtual production of quérk pairs from vacuum
fluctuations. As the simple quark model has had many successes, one might hope
that this approximation is reasonable. Indeed, the results on hadronic spectra
have been remarkably good; a recent calculation® which input the pion and rho.

masses gave, among other results,

particle calculated mass (MeV) experimental mass
A4 1497+/-162 1275
S : 1063+/-79 975
N 1073+/-91 939

A remarkable feature of this approximation is that it gives rise to a light
pion, consistent with spontanecus breaking of chiral symmetry.
Despite the successes, these calculations are an approximation. There are

several algorithms available to include the effects of dynmamical quark loops,



but they all are extremely intensive in demands for computer time. To show that
fermionic algorithms in principle do exist, I will now discuss one such®, " This
is a variation on the algorithms of refs. (10) and (11).

Because the Fermlonic part of the gauge theory action is quadratic in the
fermionic fields, the latter can be formally integrated out. Thus the goal of a
fermionic simulation is to generate gauge configurations weighted with the

distribuéion
P (4) . |M(A)| e~S(A) (9)

Here M{A) is the Dirac operator. 1 assume that some trick such as considering
two flavors has been done to make M positive, The following three steps will
take an ensemble of gauge configurations closer to the above distribution. For
every initial gauge configuration A:

l. Select a trial new configuration A'. This could differ from A by, say,
one link variable. The choice of A' should be done symmetrically s¢ that the
probability choosing A" given A is the same as would be the probability of
chosing A as the trial if the original configuration had been A', This is
identical to the first step of the usual Metropolis algorithm for pure gauge
fields.

2. Generate a complex field ¢ on the lattice sites with a Gaussian weight

depending on the trial A'

%
- T
P(¢) - e ¢ MCAT) (10)
3. Conditionally accept the change A goes to A' with the probability
*
Min (1,[exp(S(A)-S(A") + ¢ (M(A')-M(A))¢)] (11)

Note that one factor here is exactly what one would use with the couventional



10

Metropolis approach for pure gauge fields. Thg remainder is the inverse of what
one would include for bosons coupled to the gauge field.

This algorithm is easily justified by showing that it satisfies the
detailed balance condition

PE(A)P(A+A') = PE(A')P(A'+A) (12)

where P(A»A') is the probability for taking A to A'. This is a sufficient but
not nece;sary condition to approach equilibrium; a necessary and sufficient
condition is the sum of this equation over A'. Clearly we only need to
investigate this relation when A is unequal to A'. The probability of taking A
to A' involves integrating over all possible intermediate values of the

auxiliary “"pseudofermion” field ¢. Thus the left hand side of the above

equation for A # A' is

* *
PLAB(AYAT) = BL(A)U(A,A") 3— [(dg) e ® MADS ip() o ~ST+S+e (MI-M)g,
$

(13)
where the integral over ¢ requires the normalization factor
*M(A")
z, = [(de) e ¢ L 1/|M(A')| (14)
and U(A,A') = U(A',A) 1is the probability of choosing trial A’ given A.
Explicitly combining egqs. (9), (13), and (14) gives
PL(A)P(Ara") - [M(A)' IM(A')] UCA,A') x
*
- - 1 - T -
[ d¢ min (e () e $H(A )¢, e 5(a’) e ? M(A)¢] (15)

This form it is explicitly symmetric in A and A'; thus, detailed balance is
satisfied.

Several comments on this algorithm are in order:

1. There is no need for A' to be very near A because no first order

approximation in the change of A is made. The ability to make large changes
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should be an advantage over both the algorithm in ref. (10) and the
microcanonical approach of ref. (12).

| 2. Unlike the discussion in ref. (11), the acceptance requirement does not
require an average over an ensemble of ¢ fields.

3. As with all known fermionic‘methods, there is one time consuming step
deep within the main Monte Carlc loop. Here it is the generation of the
Gaussian'weighted field d Grady9 is Investigating whether one may be able to
only partially relax the pseudofermion field at gach step. This hope arises
from the considerable freedom available in boson simulations,

In this talk I have discussed how the possibility of studying the solutions
to nontrivial quantum field theories has made particle theorists avid users of
supercomputer time. The results have been spectacular, with first principle
calculations of non—perturbatiye hadronic properties. The main outstanding
problem is the simulation of dynamical quarks, which at present strains even the
~ most advanced facilities. The problem appears so severe that a few groups are
attempting to design their own special purpose processors to obtain the needed

3, More research is also needed into new algorithms; for

computer cyclesl
example a microcanonical Monte Carlo approach that I have recently been
developinglk is about an order of magnitude faster than conventional approaches
for simulation of discrete systems such as the Ising wmodel. Finally, in the
enthusiasm for numerical methods, analytic approaches to lattice gauge theory

have been somewhat neglected.
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